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Iterative techniques for molecular CI wavefunctions 

by G. L. BENDAZZOLI, S. EVANGELIST1 and P. PALMIER1 
Dipartimento di Chimica Fisica ed Inorganica, 
Viale Risorgimento 4, 1-40136 Bologna, Italy 

and S. RETTRUP 
Department of Physical Chemistry, H.C. 0rsted Institute, 

University of Copenhagen, Universitetsparken 5, 
DK-2100 Copenhagen 0 ,  Denmark 

Some iterative methods for eigenvalue problems and systems of linear equktions 
involving large matrices are reviewed. Applications to the computation of 
molecular eigenstates and properties are presented and discussed. 

1. Introduction 
Iterative methods are routinely used for solving the eigenvalue problem 

H x = E x  (1) 
where the Hamiltonian H is a large symmetric matrix of dimension N .  Here N is of the 
order of several thousand and therefore the matrix cannot be kept in fast storage, while 
single rows or columns are supposed to be. 

A similar problem occurs in the direct calculation of transition energies in the 
random phase approximation (RPA), that leads to a non-Hermitian eigenvalue 
problem which can be written in the form 

Rx = w 2 x  (2) 
R is a non-Hermitian matrix, R = ( A - B ) ( A + B ) ,  where A and B are Hermitian 
submatrices, and o represents the transition energy. 

Iterative methods are also used to solve large systems of linear equations of the form 

A x = b  (3) 
Such systems of equations are involved in many problems of interest in quantum 
chemistry, such as in perturbation theory and Newton-Raphson methods for solving 
nonlinear problems such as MCSCF and Coupled Cluster approaches. In this paper we 
review some known iterative methods for solving equations (1x3) and illustrate 
applications to molecular problems. 

2. Eigenvalue problems 
A common feature of the methods we are considering is that we approximate the 

solution of the original problem (in the large space L of dimension N )  with a sequence of 
solutions of ‘reduced problems in smaller subspaces L, of dimension n + 1. This value n 
increases at each iteration and its maximum value must be such that the reduced 
problem can be solved in L, by standard methods for small matrices. The effectiveness 
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386 G. L. Bendazzoli et al. 

of the method depends upon the way this subspace is generated step after step. Usually 
an approximation of the resolvent of H is involved in some explicit or implicit way. One 
of the first contributions is that of Bartlett and Brandas (1972,1973). They developed a 
variational-perturbation theory for solving the eigenvalue problem (1) based on a 
general splitting of the Hamjltonian H = H ,  + Vand applied it in the case where H ,  is 
the outer projection of H in a subspace of small dimension. The best known method for 
symmetric matrices is due to Davidson (1 975, 1983); his algorithm originated a family 
of methods (see, e.g. Hinze 1982). An important feature of Davidson’s technique is that 
it can be programmed in a direct way, i.e. without explicit construction of the 
Hamiltonian matrix H.  

We begin by considering the simplest problem, i.e. finding the lowest eigenstate of a 
symmetric matrix H.  The approximate eigenvector x, at the nth iteration is a linear 
combination of vectors h, which constitute a basis of L,: 

f l  

xn= 1 hiCin 
i = O  

The coefficients (ckn) are obtained by solving the eigenvalue problem for the matrix M ,  
(dimension n + 1) 

M,c, = S,C,E, (5)  
The elements of the Hamiltonian and overlap matrices M ,  and S, are defined as follows: 

( M J i j =  hfHh, . (6 a) 

(S,),=hpl, (6 4 
The sequence starts with a guess h, and a new h,, is added at each iteration. We can 
associate to each x, a residual r, defined as 

r ,  = ( H  - E,)x, (7) 
This is used to test convergence and to generate h,, The latter is given according to 

Different choices of the linear operator or matrix Z,  generate different methods. 
From a purely mathematical point of view one should use the reduced resolvent, 
Z,- ’ = ( E n -  P,H)- ‘P ,  (Lowdin 1968) where P, is the projector in the orthogonal 
complement of x,. Usually, however, such a 2, is difficult to invert and approximations 
which are more easily invertable are required. Davidson’s method is obtained when Z ,  
is chosen to be the diagonal of ( H -  En). Gradient methods are included in this scheme 
for Z,=I; they have been used by Bartlett and Brandas and are closely related to 
Lanczos’ method (see, e.g. Golub and van Loan 1983). Other choices to be considered 
are block-diagonal approximations of H.  Another possibility has been pointed out 
(Bendazzoli et al. 1987 a): one can use the lower or upper triangle of ( H  - En) since h,, 
can then be obtained by solving a triangular system of linear equations at each 
iteration. Such systems are easily programmed and the only requirement is to access to 
the elements of the matrix row-wise. This seems to destroy the possibility of a direct-CI 
type of implementation of the algorithm. Numerical experiments indicate, however, 
that the triangle is a good choice (Bendazzoli et al. 1987 a). Also band matrices can easily 
be inverted as is well known in the numerical solution of partial differential equations; 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
5
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Iterative techniques for CI wavefunctions 387 

unfortunately CI matrices do not show any band structure, even in some approximate 
way. The different choices of Z,  can be intermixed and the possibility to switch from 
one another is trivially implemented. 

Once the new vector h,+l  is generated, we have two alternatives. We can 
orthogonalize it to the previous h, by the Schmidt process and get an orthonormal 
basis for L,. In such a case S ,  of equation (5) is the identity. The second possibility is to 
keep the basis non-orthogonal and solve equation (5)  by a routine for generalized 
eigenvalue problems. Our numerical experiences seem to indicate a better stability of 
the first procedure, which involves some more computational work. 

We have implemented these procedures in a conventional configuration-driven CI 
program based on the spin bonded formalism (Cooper and McWeeny 1966). For 
determination of the ground state, convergence is achieved typically in less than ten 
iterations and Davidson’s choice of Z,  is the most convenient because it requires less 
computer time than the triangle and is more effective than the gradient. This program 
has been applied to compute wavefunctions at the SDCI level to test many-body 
methods for simple molecules (Bendazzoli et al. 1982 a). 

The non-Hermitian problem in equation (2) can be treated similarly (Rettrup 1982). 
Considering specifically the application to the RPA method, it is known that equation 
(2) is equivalent to a generalized Hermitian eigenvalue problem with eigenvalues o. It 
means that the solutions to equation (2) can be chosen to be real. In practical 
applications, however, we find that spurious complex contributions arise during the 
iterations in the solution of the small non-Hermitian eigenvalue problem (5). 
Computationally this difficulty is handled by using, instead of M,, the modified matrix 
(Bouman et al. 1983) 

M:, = ( M ,  + aMl;)/( 1 + a) (9) 
Gradually in each iteration we increase a (e.g.: 0.0,01, 0.2,. . .) in solving (5)  until the 
complex components disappear. At present we are also using the algorithm in a direct 
CI program for correlation studies based on the biorthogonal valence bond approach. 

Davidson’s algorithm is easily modified for excited states. We start the iterative 
process with a set of guess vectors spanning the ‘dominant components’ of the states 
lying below the particular eigenvector we are looking for. This idea has been refined in 
several ways, and an alternative has been explored (Bendazzoli et al. 1987). The idea, 
which goes back to Feler (1974), is to minimize the quadratic form 

(Hx - WX)+(HX - wx) (10) 

with the normalization constraint on x,  and where w is a given number. This is 
equivalent to computing the ground eigenvector of ( H  - W ) ~ ( H  - w). The latter is 
nothing but the eigenvector of H closest to win energy; only one guess vector is needed. 
All the process is programmed in a way very similar to the normal Davidson algorithm. 
At each step we solve equation (5)  as before, where the matrix M ,  is now given by 

(M,)ij = ((H - w)hJt (H  - w)hj 

while the overlap S ,  is still given by equation (6 b). Therefore we do not need to compute 
the square of the matrix H. The new vector h,,  is generated using the same choices of 
Z ,  operators as in the ground state case. We have again two variants, one with Schmidt 
orthogonalization and one without. The method proved to be effective for CI matrices 
of the order of 2-3000, where it converged in less than 40 iterations for states 0 9  a.u. 
above the ground state. It should be pointed out that the computation of eigenvectors 
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388 G. L. Bendazzoli et al. 

in a region of very high density of states like this one is a difficult task. Neither the 
diagonal nor simple gradient method was able to achieve convergence in this case; the 
only successful choice of 2, was the triangle. As far as the numerical problems are 
concerned they turn up in the form of approximate linear dependencies. These lead to 
nearly singular overlap matrices S,,, the eigenvalue problem (5) becomes unstable and 
requires special treatment. In the other method we have the following situation. When 
we Schmidt-orthogonalize the vector h n f l  given by equation (8) to the previous 
vectors, its norm l]h,+ 11 will become almost zero. Thereafter the normalization of this 
vector will destroy orthogonality because of round-off errors. We check the norm of the 
vector after orthogonalization and if it is smaller than a given threshold, we perform the 
Schmidt orthogonalization again. 

This technique could be useful for studying X-ray transitions, where a hole state 
with very high energy can interact with a manifold of single and double excitations. The 
method can also be adapted to the computation of excited potential energy curves of 
molecules. It is convenient to compute the ground-state energy E ,  at the required 
geometries and to express w as E,  + 6, where 6 is a constant for all geometries. An 
example of this procedure is given in table 1 for an excited state of ?ZC symmetry of 
OH. The dimension of the matrix is 2794 and the value of 6 is 0.379 68. 

Table 1. Ground and excited state energies Eo, Ei of ’C+ symmetry for OH for a number of 
internuclear distances R.  The dimension of the CI matrix is 2794 and the convergence 
threshold for residual norm is 10. All quantities are in a.u. 

Number of 
R EO Ei Ei- Eo iterations 

1.50 - 75.323 737 - 74.944 06 0.374 248 11 
2.00 - 75.374 260 - 74.994 58 0.356 212 13 
2.50 - 75.344057 -74.96438 0.337 167 15 
4.00 - 75.301 895 - 74.922 22 0.399 83 1 26 

3. Systems of linear equations 
We write the system in the form 

(H - W)X = b (12) 
where w is a given constant. This problem has remarkable similarities with the previous 
one. We consider methods where the solution x of equation (12) is approximated by an 
expansion similar to equation (4); we have again a subspace L, growing with the 
number of iterations, and a residual vector r,  given by 

r, = (H- w)x, - b (13) 
This residual is used to generate the new basis vector h,, by means of equation (8), 
where the operator Z, is defined as before, but with En replaced by the constant w. 
Therefore Z does not depend on the iteration number n; in this case 2- should be an 
approximation not to the reduced, but to the full resolvent of H ,  without projectors in 
the orthogonal complement to x,. The coefficients cin are now obtained as solutions of a 
reduced system of linear equations 

M,c, = b, (14) 
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Iterative techniques for CI wavefunctions 389 

There are essentially two ways to define the reduced equation (14). The first, introduced 
in quantum chemistry by Pople et al. (1980), can be described as a projection method 
(Purvis and Bartlett 1981), since the matrix M ,  is the outer projection of H-w in the 
reduced subspace L,. In this case 

(M,)ij= h!(H-w)hj (15) 

(bJi=hfb i , j=O, 1 , .  . . , n (16) 
The problem can be viewed as the unconstrained minimization of the quadratic form 

xi( H u t ) . ~ , ,  + h i x ,  + x: h,, 

in the subspace L. The second method has been considered by Purvis and Bartlett 
(1981) and given the name ‘least squares’. It can be described as the minimization of 
another quadratic form, i.e. 

( (H-w)~,)~(H-w)x,  + ((H-w)bJtx, + x,?(H-w)b, 

corresponding to the square norm of the residual vector. The new definitions of matrix 
M ,  and vector b, in reduced space L, are now 

( A 4 , ) i j  = ((H-w)kJt(H-w)hj (17) 

(bJi = ((H-w)kJtbj (18) 

Equation (14) can be solved by standard methods for small matrices. The components 
cin of the vector c, will in general change from iteration to iteration. One can generate 
the basis vectors k, in such a way that the matrix M ,  is diagonal. This is obtained by a 
Schmidt-like orthogonalization in a suitable pseudo metric A ( A  = (H-w) in the 
projection case, and A = ( H - w ) ~  in the least-square case). As soon as a h, is generated, 
we replace it by 

n- 1 

i = O  
h,- C [h!(H-w)k,]h, 

Equation (14) is now trivially solved and the components tin, i = 1,2,. . . n, computed at 
iteration n will not change in iteration n+1. This is strongly reminiscent of the 
conjugate gradient algorithm (5) and, as Wormer et al. (1982) have shown, both 
projection and least-squares procedures are nothing but particular cases of the 
preconditioned conjugate gradient algorithm, in which h,, is generated by choosing 
Z = I and it is sufficient to perform the A-orthogonalization to k,- with considerablea 
saving of computer time. In the preconditioned version of the method, one introduces a 
matrix C called the preconditioner and considers the modified system 

C-1/2(H-w)C-1/2y= C-1/2b (20) 
and tries to solve it by conjugate gradient. The preconditioner C is chosen to improve 
the convergence; in our case, the role of preconditioner is played by the matrix Z. In the 
present version of our program we use equation (19). 

Perturbation theory provides good examples of systems of linear equations when 
the wavefunction is expanded in a CT basis. For a time-dependent Hamiltonian 
H = H ,  + Vexp(icut) + Vexp( - iwt) with unperturbed eigenstates Y,, such that 
H,Y,= EflYn, the first order equations are (in atomic units) 

( H ,  - En + C O ) ~ :  = - VY, 

( H ,  - En - Co)@- = - VYfl  

(21 a) 

(21 b) 
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The quantity of physical interest is usually given by the sum 

4; ' y n  + 4; ' Y n  (22) 
The time-independent case is obtained as the limit for w=O of equation (22). It should 
be noticed that the individual equations (21 a, b) are singular for (r) =O; in equation (22) 
there is cancellation of a divergent contribution from the two terms. This contribution 
comes from the component of VY, along the eigenvector Y, of ( H ,  -En). Thus the first 
order time-independent equation differs from (21 a, b) in the right-hand side 

* ( H ,  - E,)Y, = (El  - V)Y, (23) 
which is now orthogonalized to Y,, a necessary condition for the existence of solutions. 

Expansion of Y, and 4" in a CI basis leads directly to systems of linear equations. A 
typical example is the computation of dynamic polarizability, where Vis the usual 
dipole interaction with the field. An example concerns the OH radical (Bendazzoli et al. 
1987 b). Equations (21 a, b) are solved for a range of values of o and the solutions 
combined according to equation (22). Both projection and least-squares methods 
converge in seven to ten iterations when the system is well conditioned. In the case of 
equation (23), the iterative process can be carried out in the orthogonal complement to 
Y,, which is known in advance. Accidental singularities (resonances) may be met for 
non-zero values of o, when E,  + o or E ,  -w is close to another eigenvalue E, of H,. 
This case could be treated by computing separately the corresponding eigenvector Y,, 
and working in the orthogonal complement. This procedure is inconvenient, because 
one should previously test the neighbourhood of w for eigenvectors, i.e. using the 
method for excited eigenvalues described in section 2. For this reason a method was 
developed which simultaneously computes the resonant, if any, eigenvector Y, and the 
solution in the orthogonal complement to Y,  (Bendazzoli et al. 1987 b). Equation (14) is 
solved by diagonalizing the matrix M ,  with a unitary transformation, in order to find 
its eigenvalues. These are related by the variational principle to those of (H, - En + w )  if 
we are in the projection method, or to those of (H, -En + 0)' in least-squares. A near- 
resonant eigenstate corresponds to a small eigenvalue of M,. In the projection method 
the matrix M ,  is not positive definite and this brings about a rather disturbing feature, 
i.e. the appearance of temporary small eigenvalues. Because of the variational principle, 
the eigenvalues of M ,  decrease as the number n of iterations increases. Therefore an 
initially positive eigenvalue can be positive at the beginning of the cycle, very close to 
zero at some intermediate stage, and finally assume a negative value at the end. In such 
a situation it is difficult to decide whether we have a genuine resonance or not. This is 
not the case for the least-squares method, for the M ,  matrix is always positive definite. 
We have implemented a method called 'alternate iterations', in which equation (14) is 
solved by diagonalizing the M ,  matrix defined as in equation (17) and a check is 
performed on the smallest eigenvalue of M,. When this is below a given threshold, we 
split the problem in two parts, called singular and regular. The former is the resonant 
eigenvector Yr, the latter the solution of the system in the orthogonal complement to 
Y,. The iterative process continues with two residuals, a singular (rSn) defined as in 
equation (7) and a regular (r,.,), defined as in equation (13). The vector h,, is generated 
using equation (8) with a Z operator acting alternatively on I, ,  and r,, (Bendazzoli et al. 
1987 b). 

Another field of application of the first-order inhomogeneous equations of 
perturbation theory is the computation of transition probabilities in spectroscopic 
processes. A two-photon transition amplitude from a molecular eigenstate Y,, to 
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Table 2. xz components of the two-photon tensor ( A 2 C + ~ x ( H - h w ) - ’ z ~ X 2 ~ )  for OH for 
different values of the internuclear separation R and photon energy hw. All quantities are 
in a.u. The convergence threshold is The numbers in parentheses give the number of 
iterations. 

hw R = 1.50 R = 2.00 R = 2.50 R = 4.00 

-0.16 
-0.12 
- 0.08 
- 0.04 

0.04 
0.08 
0.12 
0.16 

-1.00746 ( 5 )  -0.71893 (5)  
- 1.309 78 (5)  -0.903 43 (6) 
- 1.903 32 (5)  - 1.253 52 (6) 
-3.655 12 ( 5 )  -2.25287 (6) 

3.21 194 (6) 
1.466 08 (7) 
0.850 74 (7) 

1.519 32 (8) 
0.494 69 (8) 
0.093 30 (8) 

0.51242 (7) -0.17462 (8) 

-0.382 52 (7) 
- 0.449 4 1 (7) 
-055951 (8) 
-0.83051 (8) 

-0.044 88 (9) 
-0.363 72 (9) 
-0.568 02 (9) 
-0.801 19 (10) 

0.068 60 (7) 
0.083 47 (8) 
010678 (9) 
0.15706 (10) 

0.082 67 (1 2) 
0.25457 (13) 
0.060 52 (12) 
0.215 33 (12) 

another state Y,,, can be computed as the scalar product of the solution of equation (21) 
with VY,. Both quantities are in principle representable with CI expansions, if 
suitable approximations are introduced for the nuclear degrees of freedom 
(Bendazzoli et al. 1983). We attempted the computation of absolute values of 
absorptivities for two-photon transitions in OH and H, using symmetry-adapted CSF 
expansions for a number of internuclear distances. In table 2 we show some values for 
the xz component of the two-photon tensor for the A 2 X + t X 2 1 1  transition of OH. 
Only order-of-magnitude agreement with experimental data is obtained with our CT 
expansion at the multi-reference SDCI level of dimension 2185. Another example is the 
study of the Alg-BZu transition in benzene (Bendazzoli et al. 1986). Two-photon 
absorption is forbidden in the dipole approximation and a vibronic mechanism is 
advocated. As an example we may consider the xx component of the transition tensor, 
where x is the axis bisecting two opposite C-C bonds. The CI computation has been 
performed at a geometry distorted according to a well defined prescription to account 
for vibronic interactions. Using a minimal basis set of STO-3G AOs, we generated a list 
of 4392 CSF selected from a larger set of configurations. The selection criteria take into 
account both energy and dipole matrix elements. The solution of the linear system (21) 
typically requires eight to ten iterations to get a residual norm less than in the 
least-squares method. When comparison with experiment is possible, intensities and 
polarization ratios of various vibronic components are qualitatively reproduced. 

As a last example we quote the computation of magnetic circular dichroism (MCD) 
constants for 9,9’-spirobifluorene ( S B F )  (Bendazzoli et al. 1982 b). The MCD spectrum 
originates when a transition to a degenerate excited state takes place in an external 
magnetic field. Our procedure applies in particular to the computation of the B 
constant. The latter contains matrix elements of operators between molecular states 
and the solution of equation (23), where V is the perturbation due to the magnetic field 
and Y n  is one of the degenerate components of the excited state. This technique more 
accurately described the dichroism of SBF, confirming the degeneracy of the lowest 
excited state of this molecule. 
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